1 0 Fe b 20 09 Approximation Algorithms for Bregman Co - clustering and Tensor Clustering ∗
نویسنده
چکیده
In the past few years powerful generalizations to the Euclidean k-means problem have been made, such as Bregman clustering [7], co-clustering (i.e., simultaneous clustering of rows and columns of an input matrix) [9, 17], and tensor clustering [8, 32]. Like k-means, these more general problems also suffer from the NP-hardness of the associated optimization. Researchers have developed approximation algorithms of varying degrees of sophistication for k-means, kmedians, and more recently also for Bregman clustering [2]. However, there seem to be no approximation algorithms for Bregman coand tensor clustering. In this paper we derive the first (to our knowledge) guaranteed methods for these increasingly important clustering settings. Going beyond Bregman divergences, we also prove an approximation factor for tensor clustering with lp norms, which for the l1 norm is a generalization of k-medians to tensors. Through extensive experiments we evaluate the characteristics of our method, and show that our methods also have practical impact.
منابع مشابه
ar X iv : 0 81 2 . 03 89 v 3 [ cs . D S ] 1 5 M ay 2 00 9 Approximation Algorithms for Bregman Co - clustering and Tensor Clustering
In the past few years powerful generalizations to the Euclidean k-means problem have been made, such as Bregman clustering [7], co-clustering (i.e., simultaneous clustering of rows and columns of an input matrix) [9, 18], and tensor clustering [8, 34]. Like k-means, these more general problems also suffer from the NP-hardness of the associated optimization. Researchers have developed approximat...
متن کاملApproximation Algorithms for Bregman Clustering Co-clustering and Tensor Clustering
The Euclidean K-means problem is fundamental to clustering and over the years it has been intensely investigated. More recently, generalizations such as Bregman k-means [8], co-clustering [10], and tensor (multi-way) clustering [40] have also gained prominence. A well-known computational difficulty encountered by these clustering problems is the NP-Hardness of the associated optimization task, ...
متن کاملApproximation Algorithms for Bregman Co-clustering and Tensor Clustering
In the past few years powerful generalizations to the Euclidean k-means problem have been made, such as Bregman clustering [7], co-clustering (i.e., simultaneous clustering of rows and columns of an input matrix) [9, 18], and tensor clustering [8, 34]. Like k-means, these more general problems also suffer from the NP-hardness of the associated optimization. Researchers have developed approximat...
متن کاملApproximation Algorithms for Tensor Clustering
We present the first (to our knowledge) approximation algorithm for tensor clustering—a powerful generalization to basic 1D clustering. Tensors are increasingly common in modern applications dealing with complex heterogeneous data and clustering them is a fundamental tool for data analysis and pattern discovery. Akin to their 1D cousins, common tensor clustering formulations are NP-hard to opti...
متن کاملBregman Co-clustering and Matrix Approximation A Generalized Maximum Entropy Approach to Bregman Co-clustering and Matrix Approximation
Co-clustering, or simultaneous clustering of rows and columns of a two-dimensional data matrix, is rapidly becoming a powerful data analysis technique. Co-clustering has enjoyed wide success in varied application domains such as text clustering, gene-microarray analysis, natural language processing and image, speech and video analysis. In this paper, we introduce a partitional co-clustering for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009